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Abstract

Complexation-induced changes in proton chemical shifts provide a potent tool for conformational analysis, being highly de-

pendent on intermolecular orientation. An important contribution to these shifts arises from the molecular magnetisability an-

isotropy, or more specifically from the anisotropy of certain groups, such as aromatic rings and unsaturated bonds. While the

influence of aromatic rings has been well characterised via the ring current effect, unsaturated bonds have received much less at-

tention and prediction of complexation shifts is hampered by the lack of accurate anisotropy parameters for these bonds. We have

therefore used ab initio calculations at the HF/aug-cc-pVDZ level to obtain bond anisotropies for C–H, N–H, C@O, C@C, C@N,
N@N, CBC, and CBN. Fitting the anisotropies to bond magnetic dipoles (the McConnell equation) gives non-transferable values
for C–H and N–H bonds. We have therefore expanded in terms of bond magnetic dipoles, quadrupoles, and octopoles for double

and triple bonds only, obtaining highly accurate shielding surfaces in all cases. The transferable nature of the anisotropies is

confirmed by comparing with shifts obtained in larger molecules containing unsaturated bonds.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Complexation-induced chemical shifts provide a sig-

nificant aid to structure determination in supramolecular

and biomolecular complexes [1–5]. The complexation-

induced chemical shift (CIS),2 Dr, results from local

electric and magnetic fields due to neighbouring mole-

cules of a complex. It is especially pronounced in hy-

drogen bonded protons and for protons in the vicinity of
aromatic rings and unsaturated bonds. Conformational

variations can have a large effect on complexation shifts

and accurate models therefore provide an excellent

means of probing biomolecular structure.

Complexation shifts were initially discussed in the

context of �solvent� effects [6], in order to explain shift

variations which could not be accounted for by chan-
ges in covalent structure. In non-aromatic organic

solvents, however, solvent NMR effects are generally

negligible and complexation shifts arise from solute–

solute interactions. The complexation-induced shift can

be decomposed into an electric and magnetic field

component

Dr ¼ Drelectric þ Drmagnetic; ð1Þ
where

Drelectric ¼ A � Eþ B � E � Eþ C � E0 þ � � � ; ð2Þ
E represents a uniform electric field and E0 is the field

gradient. A, B, and C are response properties which

describe the change in the shielding tensor r in the
presence of an electric field [7]. In the case of complex-

ation shifts these fields and field gradients arise from

neighbouring atoms. The electric field effect has been

studied and parameterised extensively [1] and is there-
fore not the focus of this paper.

Drmagnetic is expressed in terms of the magnetisability
rather than the magnetic field. The shielding at a point
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ðR;H;UÞ outside the molecular electron density is given
by [8]:

Drmagnetic ¼
X1
L¼2

XL

M¼0
ðALM cosMU þ BLM sinMUÞ

� PM
L ðcosHÞ
RLþ1 ; ð3Þ

where ALM and BLM are related to the anisotropy of the

2Lth order magnetisability and PM
L ðcos hÞ are associated

Legendre polynomials. ðR;H;UÞ are spherical polar
coordinates. R is the length of vector R, which extends
from the point of interest to the gauge origin and

H ¼ arccosðz=RÞ; ð4Þ

U ¼ arctanðy=xÞ ðx > 0Þ
¼ arctanðy=xÞ þ p ðx < 0Þ; ð5Þ

R2 ¼ x2 þ y2 þ z2: ð6Þ
In molecules or bonds which are cylindrically symmetric

(e.g., single or triple bonds), this equation is frequently
truncated at the first term, approximating the perturbing

group as a magnetic dipole, to give the so-called

McConnell equation [9]

Drmagnetic ¼ 1
2
A20ð1	 3 cos2 hÞR	3: ð7Þ

In terms of the magnetisability tensor, v,

A20 ¼ 	 2
3
ðvzz 	 vxxÞ;

with the z-axis along the bond. ALM and BLM are there-

fore related to magnetisability anisotropies via scaling
factors. Double bonds possessing C2v symmetry have an

A22 contribution,

Drmagnetic ¼ A20
2

ð1
�

	 3 cos2 HÞ

þ 3A22 cos 2U sin2H
�
R	3: ð8Þ

Bonds of lower symmetry will also have non-zero values

for B2M , as detailed by Stiles [8].
The McConnell equation describes a shielding cone

above the bond, which is frequently used to explain the

shielding effect of anisotropic bonds [10]. The cone has

analogous angular dependence to that of a d-orbital.

Higher-order terms generate symmetries consistent with

f, g, etc. orbitals and can be used to rationalise observed

sector rules for lanthanide-induced shifts [11]. While the

higher order terms act at shorter and shorter distances,

due to the RLþ1 denominator in Eq. (3), they are still
crucial in describing the anisotropy of groups such as

C@O and CBN, as we will show.
The use of proton NMR complexation shifts in

conformational analysis is an area of growing impor-

tance [2–4]. Weakly bound intermolecular complexes,

for which crystal structures are not easily obtainable,
can be characterised [12] while accurate structures have

been obtained for a range of host–guest complexes [4]. It

is also possible to characterise protein–protein com-

plexes in solution when using complexation shifts in

tandem with residual dipolar coupling data [13]. Such

applications rely on the availability of bond and ring

current anisotropies to define contributions to Drmagnetic.
These have frequently been obtained by parameterising
against experimental shifts [1] and more recently by

ab initio calculation [14]. While the influence of ring

currents has been exhaustively studied, individual bond

anisotropies have received limited attention, rarely ex-

tending beyond the amide group for use in characteris-

ing proteins [15]. This places a severe restriction on the

type of systems for which accurate complexation shifts

can be calculated. Even though the shielding effect of
anisotropic bonds is smaller than for aromatic ring

currents, they nevertheless make an important contri-

bution to complexation shifts [14].

It is therefore desirable to define an accurate method

for parameterising transferable bond anisotropies,

which can be applied across a broad range of molecular

systems. The method adopted here is purely computa-

tional. This avoids the need for an extensive set of ex-
perimental data against which to parameterise, not least

because such data is plentiful for bonds present in pro-

teins, but in very short supply for other bond types.

Bond anisotropies are calculated in small molecules

which exemplify a particular bond type (using C2H4 to

define the C@C bond for example). These bond terms
are then used unchanged in larger molecules, assuming

that anisotropies are transferable. The transferability of
magnetic properties was first established by Pascal and

numerous schemes for defining atom and bond mag-

netisabilities have appeared, exemplified by the work of

Flygare et al. [16]. The results obtained here also dem-

onstrate the transferability of bond anisotropies.

2. Methods

The method used for determining the bond aniso-

tropies is related to approaches for fitting charges to

molecular electrostatic potentials. The electrostatic po-

tential, at any point beyond the van der Waals surface,

can be modelled using a set of charges and multipoles,

positioned somewhere within the molecule. The natural

position for these charges is at the atoms or at bond
centres, and numerous methods exist for parameterising

them. Since magnetic monopoles do not exist, the

shielding surface of a molecule can be modelled by a set

of magnetic multipoles, via Eq. (3). As Eq. (7) makes

clear, the properties of the magnetic field are such that

the shielding will be zero unless the molecule in question

has a magnetisability anisotropy. In single bonds this
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anisotropy is very small and is generally neglected; only
in multiple bonds and aromatic systems does it become

important. A simple way to obtain values of ALM and

BLM therefore is to fit Eq. (3) to an ab initio Hartree–

Fock shielding surface calculated at points beyond the

van der Waals surface of the molecule. Previous at-

tempts to define ALM and BLM values have focused solely

on the first term (i.e., the McConnell equation) and have

been parameterised on experimental complexation data
[15,17,18]. Such parameterizations are restricted to

sampling binding conformations and thus do not sample

the full conformational space. This may lead to spurious

values for some anisotropies. It is likely that fitting to ab

initio values will give a set of anisotropies which are

internally consistent and describe more accurately the

complexation shifts over the entire molecular surface.

We note that the absolute shielding at some point be-
yond the van der Waals surface depends only on the

molecular magnetic anisotropy, as defined by the Stiles

equation [Eq. (3)] and does not include any contribution

from electric field or van der Waals effects, which are

frequently included in models for intermolecular

shielding [1]. The approach adopted here is to calculate

the absolute shielding surface for an isolated molecule,

which is then fitted to the Stiles equation [Eq. (3)]. In
principle, this could produce an exact expansion, pro-

vided that a high enough value of L was considered. In a
bimolecular complex, the electrostatic potential of one

molecule perturbs that of the other and thereby modifies

its proton shieldings. This gives rise to electric field and

van der Waals contributions, which are induced effects

and not part of the shielding surface for the isolated

molecule. They are independent of the absolute shield-
ing generated by the magnetic anisotropy and must

therefore be obtained by other means [1].

ALM and BLM bond values, for L ¼ 2; 3; 4, were fit to
Eq. (3) by generating a large set of absolute shielding

values at points around each molecule. These shielding

points were selected by taking each bond in turn and

placing points at a distance of 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,

6.0�AA from each bond centre, in the coordinate frame of
the bond, in directions both parallel and perpendicular

to the molecular plane. Shielding points were rejected if
they lay within 2.4�AA of a proton (that is, given a van der
Waals radius of 1.2�AA for a proton, this is the closest
approach that a neighbouring proton can make without

significant repulsion effects), within 2.9�AA of a carbon
atom and within 2.0�AA of an oxygen or nitrogen atom.
The latter is the distance between the proton and heavy

atom that is generally observed in hydrogen bonds. This

resulted in a total of 176 points for ethene, for example,
with a similar number for other molecules (see Table 1).

ALM and BLM values were then fit to Eq. (3) using the

built-in singular value decomposition procedure (SVD)

implemented in MATLAB [19]. Absolute GIAO

shielding values were calculated for optimised molecular

geometries at HF/aug-cc-pVDZ level, using the DAL-

TON quantum chemistry program [20]. Although the

aug-cc-pVDZ basis set is not generally suitable for cal-
culating shielding values, we are essentially calculating

magnetisabilities here, for which the GIAO approxi-

mation is much more accurate [21].

The molecules used to obtain the individual bond ALM

and BLM values were as follows: C2H4 (C@C); H2CO
(C@O); CH2NH (C@N); cis-N2H2 (c-N@N); trans-

N2H2 (t-N@N); C2H2 (CBC); and HCN (CBN).
Shielding surfaces were also calculated for p-benzoqui-
none (pBQ), trans-butadiene, trans-ethanedial (glyoxal),

and 7,7,8,8-tetracyano-p-quinodimethane (TCNQ) (see

Fig. 1) using the same computational scheme as before

Table 1

ALM and BLM values for bonds X–H and X–Y (X,Y¼C, N, O and X–Y represents a double or triple bond) fitting the shielding surfaces to L ¼ 2

Anisotropies RMS error Number of data points

C–H N–H X–Y

A20 A20 A20 A21 B21 A22 B22

C2H4 )1.69 — )3.17 — — 1.24 — 0.006 176

H2CO 4.11 — )13.86 — — 2.58 — 0.034 119

CH2NH 1.40 )1.71 )7.05 — 2.20 2.20 — 0.024 148

c-N2H2 — )2.10 3.81 — — 4.65 — 0.094 122

t-N2H2 — )2.09 13.61 — — )6.06 7.80 0.083 126

C2H2 0.55 — 0.67 — — — — 0.003 106

HCN )2.01 — 8.29 — — — — 0.021 105

Units of A and B are 10	30 cm3. The RMS error of the fit (in units of ppm) is listed, along with the number of data points used in each case.

Fig. 1. Molecules used to confirm transferability of bond anisotropies.

(a) trans-butadiene, (b) trans-ethanedial, (c) pBQ, and (d) TCNQ.
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with optimised molecular geometries. These molecules
were used to confirm the transferability of the bond

terms.

3. Results and discussion

Two strategies for fitting values to Eq. (3) were

adopted. Initially, a gauge origin was placed at the
centre of charge of every bond (with the exception of C–

H and N–H, for which the gauge origin was at the centre

of the bond). Bond anisotropies were then fit to each

bond type, restricting the expansion to L ¼ 2. This ap-
proach was not successful however, as described below,

since the anisotropies for C–H and N–H were not

transferable, with A20 in C–H even changing sign be-

tween different molecules. We therefore adopted an al-
ternative approach of considering the double or triple

bond only, neglecting contributions from the X–H

bonds. To compensate for the loss of expansion sites,

which reduces the accuracy of the fit at any particular

order, we used all terms up to L ¼ 4. Since for each
value of L there are ð2Lþ 1Þ anisotropies, this implies
that a bond with C1 symmetry would have a total of 21

ALM and BLM terms to fit. However, this number is re-
duced for higher symmetries, such that the most pa-

rameters which had to be used were for the C@N bond,
which has Cs symmetry and a total of 12 non-zero an-

isotropies. By contrast, the CBN bond, with C1v sym-
metry, has only three terms up to L ¼ 4 and the CBC
bond only two, since terms in R	L cancel for L even.

Previous attempts to quantitate bond anisotropies [3]

have generally used the McConnell equation (7), which
is limited to L ¼ 2. This can be attributed both to the

ease of using only the dipole term of the full expansion
and to a lack of experimental or theoretical data with

which to parameterise the higher-order terms. However,

the properties of the CBN bond, for example, suggest
that these terms are necessary. The shielding due to this

bond cannot be described by A20 alone, since this is
defined by the bond magnetic dipole and therefore gives

the same value of shielding directly above the carbon

atom as above the nitrogen atom. Fitting A20 for both
the C–H and CBN bonds in HCN would address this
problem, but in a physically unrealistic way. It would

seem to be better therefore to fit up to the A4M terms, in
order to reproduce the shielding surface.

The results from fitting all bond anisotropies up to

L ¼ 2 are shown in Table 1. While the N–H bond an-
isotropies are very similar and could be transferred be-

tween molecules, those for C–H differ markedly in both
magnitude and sign. Only for C2H4 and C2H2 could the

RMS error of the fit be considered acceptable and it is

very poor for both N2H2 molecules. These bond terms

are transferable to molecules with similar bonding, as

Table 2 makes clear. This compares shielding surfaces

calculated at HF/aug-cc-pVDZ level, with those gener-

ated using the A/B bond values reported in Table 1. That
is, pBQ consists of two C@O bonds, two C@C bonds,
and four C–H bonds, with no anisotropy assigned to the

four C–C bonds. While the RMS error in the shielding

surfaces is larger than for ethene and formaldehyde

alone, the fitted shifts are in excellent agreement with the

ab initio values. In butadiene, for example, the shielding

3.5�AA above the centre of the single bond is calculated to
be 0.223 ppm, while the bond anisotropies give a pre-

dicted shielding of 0.229 ppm. This confirms that
shielding above the single bond is due to the anisotropy

Table 2

Comparison of shielding values 3.5�AA above the centre of CBN, C@O, C@C, and C–C bonds in a direction perpendicular to the molecular plane

Molecule Ab initio shielding Shielding from bond anisotropies RMS difference Number of data points

L ¼ 2 L ¼ 2; 3; 4 L ¼ 2 L ¼ 2; 3; 4

Butadiene C@C 0.22 0.22 0.24 0.018 0.022 187

C–C 0.22 0.23 0.27

Glyoxal C@O 0.32 0.37 0.29 0.042 0.036 157

C–C 0.34 0.39 0.32

pBQ C@O 0.37 0.42 0.34 0.024 0.031 303

C@C 0.32 0.34 0.33

C–C 0.36 0.40 0.37

TCNQ C@Ca 0.46 0.26 0.35 0.110 0.054 281

C@Cb 0.34 0.21 0.33

C–Ca 0.49 0.27 0.40

C–Cb 0.13 0.07 0.19

CBN 0.01 )0.05 0.04

Ab initio values were calculated at HF/aug-cc-pVDZ level; ALM and BLM bond anisotropies were taken from Table 1 for L ¼ 2 and from Table 3
for L ¼ 2; 3; 4. C–H and N–H anisotropies are included for L ¼ 2. Also listed is the RMS difference between the ab initio shielding surface and that
obtained from the bond anisotropies and the number of data points in each case. Units are ppm.

a In ring.
bOut of ring.
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of the two neighbouring C@C bonds, rather than any
anisotropy in the single bond itself. Predicted shifts in

TCNQ are poor, with an error in excess of 0.2 ppm in

two cases, but they are much better in pBQ and glyoxal,

with the proviso that C–H bonds attached to C@C have
different anisotropy to those attached to C@O. As we
will see however, better accuracy in all cases can be

achieved by neglecting C–H, extending to L ¼ 4 instead.
The results of fitting only the double or triple bond

anisotropies up to L ¼ 4 are shown in Table 3. The RMS
errors are invariably better than those including the C–

H and N–H bonds (Table 1), not least because we have

more parameters with which to fit the equation. Sym-

metry dictates that C@C and t-N@N have ALM ¼
BLM ¼ 0 when L is an odd number, while various other

components are zero by symmetry, as detailed by Stiles

[8]. Since the expansion of Eq. (3) up to L ¼ 4 includes
both even and odd Legendre polynomials, it is crucial

that the axis system of the bond is defined consistently.

In H2CO, for example, the z-axis is aligned along the

rotation axis and points from O to C, with the x-axis in

the rv plane. The orientation of other bonds is given in

Table 3. The magnitude of the A20 values increases in the

order C@C < c-N@N < C@N < C@O < t-N@N. This
implies that C@C has the smallest effect on a neigh-
bouring proton and t-N@N the greatest. A20 is negative
for C@O but positive for t-N@N, which means that the
lone pair region is deshielded by the bond in H2CO but

shielded in t-N2H2. Defining a lone pair position (Lp) at

3�AA from the oxygen or nitrogen, such that the C–O–Lp
and N–O–Lp angles are 120�, we find that rLp ¼
	0:15ppm in H2CO and 0.22 ppm in t-N2H2. Molecules
containing these bonds will therefore show very different

complexation shifts at hydrogen-bonded protons. In c-

N2H2 by contrast, A20 is of similar magnitude to A22,
which cancel one another such that rLp ¼ 0:03ppm,
very much smaller than in t-N2H2. The shielding sur-

faces for pBQ, butadiene, and glyoxal calculated using

these new anisotropies are reproduced with similar ac-

curacy to before (column labelled L ¼ 2; 3; 4 in Table 2),
while TCNQ is significantly better. For example, the

region above the CBN bond in HCN is deshielded, but
the influence of the C@C bonds in TCNQ is such that
there is a small shielding effect (0.01 ppm) above the

CBN. This effect is predicted very accurately using the
bond anisotropies, which give 0.04 ppm. The quality of

Table 3

ALM and BLM values (L ¼ 2; 3; 4) for C@C, C@O, C@N, N@N, N@O, CBC, and CBN bonds, fit to shielding surfaces for C2H4, H2CO, CH2NH,
c-N2H2, t-N2H2, HNO2, C2H2, and HCN, respectively

C@C C@Oa C@Nb c-N@Nc t-N@Nd CBC CBNe

A20 )1.99 )12.56 )6.16 5.19 17.56 1.78 6.16

A21
B21 2.58

A22 2.62 1.67 2.40 6.24 )3.81
B22 4.97

A30 )10.26 )0.70 8.08 )4.17
A31
B31 )1.28
A32 )1.81 )0.92 1.86

B32
A33
B33 0.25

A40 )7.25 )81.20 )38.85 )31.79 )19.68 6.72 21.77

A41
B41 7.11

A42 1.50 )6.28 2.83

B42 3.14 0.60 )3.57
A43
B43 )0.28
A44 0.05 0.12 0.01 )0.54 )0.51
B44 0.37

RMS error 0.003 0.009 0.015 0.016 0.011 0.004 0.004

The gauge origin was positioned at the centre of nuclear charge of each bond. Units for ALM and BLM are 10
	10ðLþ1Þ cmðLþ1Þ; units for RMS error

are ppm. In each molecule the z-axis coincides with the axis of highest symmetry and the x-axis lies in the molecular plane.
a z-axis points from O to C.
b z-axis points from N to C.
c z-axis bisects N@N bond in the molecular plane.
d z-axis passes through centre of N@N, perpendicular to molecular plane.
e z-axis points from N to C.
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the shielding surfaces produced without the C–H an-
isotropies is illustrated by the plots in Fig. 2. In each

case the ab initio shielding is plotted against the

shielding predicted by the bond anisotropies. Only in the

case of TCNQ is there significant deviation and even

here the errors are generally less than 0.1 ppm.

Thus, while there are generally only minor differences

in the shielding surfaces produced with and without the

C–H anisotropies, there is no obvious transferability
between molecules for these bonds. This suggests that

we do not obtain a physically reasonable description of

a C–H bond anisotropy, but simply correct errors im-

plicit in truncating the expansion for the C@X bond.
This is underlined by the fact that the RMS error in

fitting up to L ¼ 4 is much better than that which is
obtained when C–H is included (Table 3). The conclu-

sion is that C–H and N–H should not be used in the
fitting procedure, with preference given to higher-order

terms on the unsaturated bonds.

There is a limited amount of previous data for bond

anisotropies with which to compare the present results.

We have previously [2] used anisotropies for C@O de-
rived by Z€uurcher [22,23], for which A20 ¼ 11:4 and
A22 ¼ 	1:5 (in units of 10	30 cm3). These values com-
pare reasonably well with ours (Table 3), especially as

the gauge origin was placed on the oxygen rather than at
the centre of nuclear charge. Schmalz et al. [24] reported

bond anisotropies for a large number of bond types.

These were obtained by fitting to a set of molecular

magnetisabilities, decomposed into localised atom and

bond contributions. Their results compare well with

ours for the triple bonds, with CBC and CBN having
A20 ¼ 1.2 and 12.21, respectively, compared with

A20 ¼ 1:78 and 6.14 calculated here. The double bond
anisotropies are very different, however, with Schmalz et

al. reporting A20 ¼ 	11:7 and A22 ¼ 32:2, for C@C,
which are much larger than our values. However, they

also found that the anisotropies of C@C and C@O
bonds are very similar, which is not consistent with the

shielding surfaces that these bonds generate. C@O has a
region of high deshielding in the plane of the molecule

which is absent from C@C and this difference should be
reflected in their anisotropies. Other sources of data

were parameterised on intramolecular shifts and so are

not directly comparable. For example, Abraham et al.

[25,26] obtained A20 ¼ 	18:4 for CBC and A20 ¼ 	20:1
for C@C, which are much larger than our values, as
might be expected for intramolecular effects.

A2M and B2M are related to the anisotropy of the di-
pole magnetisability tensor, v, such that [8]

Fig. 2. Plots of ab initio shielding values calculated at HF/aug-cc-pVDZ level against the shielding predicted by the bond anisotropies. Each data

point represents the shielding at some position above, or in the plane of the molecule as described in Section 2.
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A20 ¼ 	 2
3

vzz

�
	 1
2
½vxx 	 vyy �

�
;

A21 ¼ 	 2
3
vxz;

B21 ¼ 	 2
3
vyz;

A22 ¼ 	 1
6
vxx 	 vyy ;

B21 ¼ 	 1
3
vxy ;

ð9Þ

where the z-axis is aligned along the principal symmetry

axis and the x-axis in the plane of highest symmetry.

Since we have used only a single expansion centre to fit
the bond anisotropies, our fitted A2M and B2M values

should be similar to the molecular anisotropies. The

GIAO molecular magnetisability tensor, v, was there-
fore calculated in DALTON [20] using the same geom-

etries and basis sets as for the shielding surfaces and the

molecular anisotropies obtained from Eq. (9). The fitted

bond values for A and B are indeed very close to their
molecular values (Table 4). In formaldehyde, for ex-
ample, the molecular anisotropy is A20 ¼ 	12:56, while
our fitted bond anisotropy is A20 ¼ 	12:97 (units of
10	30 cm3). To a first approximation therefore, we could

replace the fitted bond anisotropies with molecular

values and avoid fitting the shielding surface altogether.

However, we have already shown that the higher-order

terms are essential for generating transferable bond

anisotropies and there is currently no way to calculate
GIAO quadrupole and octopole magnetisabilities. The

fitting is therefore a means of generating these higher-

order terms, which is validated by the close agreement
between bond and molecular values for dipole magnet-

isability.

It is common to explain the anisotropy effect of

multiple bonds in terms of a shielding cone, which de-

fines the zero shielding isosurface [10]. This cone can be

described only for the A2M , since the functional depen-
dence of the shielding becomes increasingly more com-

plicated for A3M , etc. The shielding sectors which arise
from A20, A30, A40 for a triple bond, for which the
shielding depends on R and H only, are illustrated in

Fig. 3. The A20 deshielding cone extends out to

h ¼ � arccosð 1ffiffi
3

p Þ � 54:7�. A30 has six shielding sectors,
with opposite sign at either end of the bond, while A40
has eight shielding sectors. The different shielding sec-

tors explain how the higher-order terms improve the fit

to the shielding surface for CBN. If only A20 is included
in Eq. (3), the shielding contribution will be the same at

either end of the bond, while experimentally the nitrogen

is more strongly shielding than the carbon. The sym-

metry of the A30 term allows this effect to be modelled
more accurately, improving the fit. The shielding cone

above the bond will also be asymmetric, with

more deshielding above the nitrogen and it is the A40
term which models this effect, especially close in to the
bond.

Shielding isosurfaces generated from Eq. (3) are

shown in Figs. 4–6. We have chosen to illustrate the

�0.1 ppm isosurfaces, since this is the approximate error
in experimental complexation shifts [2]. There is a region

of shielding above all the double bonds: N@N bonds

show the largest shielding effect, greater than 0.1 ppm up

to 5.1�AA above the centre of the bond, while in C@C the
equivalent surface extends only 4.1�AA above the bond.
By contrast, patterns of shielding and deshielding differ

considerably around the lone pair electrons. In t-N@N,
a shielding torus encloses the both the N@N bond and
lone pairs, while in C@O and c-N@N the lone pair re-
gion is deshielded (there is also deshielding around the

lone pair of C@N, but of magnitude less than 0.1 ppm).

Table 4

Comparison of A2M and B2M values obtained from the ab initio GIAO
molecular dipole magnetisability and from the fit to the shielding

surface for individual bonds

Molecule/Bond Component Ab initio molecu-

lar anisotropy

Fitted bond

anisotropy

C2H4=C@C A20 )1.79 )1.99
A22 2.62 2.62

H2CO=C@O A20 )12.97 )12.56
A22 1.82 1.67

CH2NH=C@N A20 )5.67 )6.16
B21 2.52 2.58

A22 2.45 2.39

c-N2H2/

c-N@N
A20 3.87 5.19

A22 6.85 6.24

t-N2H2/t-N@N A20 21.05 17.56

A22 )3.55 )3.81
B22 5.08 4.97

C2H2=C2H4 A20 2.63 1.78

HCN=CBN A20 6.40 6.16

Units of A and B are 10	30 cm3.

Fig. 3. Shielding sectors above the CBN bond for K1, K2, and K3
terms. h is the angle between the surface of the cone and the bond axis.
The shielding cones are valid only beyond the VDW surface of the

bond, but are extended to the gauge origin here for convenience.
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CIS values on hydrogen-bonded protons will clearly be

very different for these bonds, although Drelectric may
override the bond anisotropy in such cases [2].

Contrary to the double bonds, CBC and CBN (Fig.
6) have a deshielding region above the bond and

shielding along the bond. The anisotropy effect of CBN
is much weaker than that of the double bonds with the

deshielding region extending less than 3�AA above the

nitrogen atom. The anisotropy effect of CBC is very
small, to the extent that there is no �0:1ppm shielding
isosurface accessible to a proton. It is clear that CBC
can have almost no influence on intermolecular com-

plexation shifts, except via electric field contributions. It
should be noted that the shielding due to all these bonds

Fig. 4. Shielding isosurfaces for C@X double bonds. The atoms are represented by spheres (C, grey; N, blue; O, red; H, black). Molecules are viewed
in the molecular plane (right column) and from directly above the centre of the heavy atom bond (left column). The surface of each atomic sphere

indicates the point at which a proton could sit without significant repulsion effects and hence be shielded by the bond. The 0.1 ppm deshielding

isosurface is coloured yellow and the 0.1 ppm shielding isosurface is magenta.
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is quite limited compared with benzene, for which the
0.1 ppm surface extends to 9�AA above the molecular

plane [27].

Finally, we note that ALM and BLM values determined
here are valid only at geometries where a neighbouring

molecule could be located without significant repulsion

Fig. 6. Shielding isosurfaces for triple bonds. The atoms are represented by spheres (C, grey; N, blue; O, red; H, black). The surface of each atomic

sphere indicates the point at which a proton could sit without significant repulsion effects and hence be shielded by the bond. In CBN, the 0.1 ppm
deshielding isosurface is coloured yellow and the 0.1 ppm shielding surface is magenta. There is no accessible shielding surface above 0.1 ppm in

CBC.

Fig. 5. Shielding isosurfaces for N@N double bonds. The atoms are represented by spheres (C, grey; N, blue; O, red; H, black). Molecules are viewed
in the molecular plane (right column) and from directly above the centre of the heavy atom bond (left column). The surface of each atomic sphere

indicates the point at which a proton could sit without significant repulsion effects and hence be shielded by the bond. The 0.1 ppm deshielding

isosurface is coloured yellow and the 0.1 ppm shielding isosurface is magenta.
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effects, that is well beyond the van der Waals surface of
the molecule. Shielding at points within the van der

Waals surface cannot be described by Eq. (3) since the

series expansion will generally be divergent. The

McConnell equation describes a situation in which a

proton is shielded by a neighbouring molecule without

being in any way perturbed by it. While this cannot be

the case experimentally [28], any such perturbation is

generally of minor importance in intermolecular com-
plexes. This is evidenced by the success of methods

which use aromatic ring currents to study CIS values in

proteins [18,29]. In order to account for intramolecular

shifts in strained systems however, a different approach

is required [8,30–33].

4. Conclusions

We have obtained transferable bond anisotropies for

a set of commonly occurring double and triple bonds,

extending the McConnell equation to include higher-

order terms so that non-transferable C–H and N–H

bond anisotropies can be neglected. The results indicate

that t-N@N will have the most significant (de)shielding
effect, while CBC is least important. We have found that
the pattern of shielding and deshielding around lone

pair electrons is dependent on the bond type, such that

the lone pair region in C@O and c-N@N is significantly
deshielded while in t-N@N it is shielded. The compu-

tational scheme used to obtain the anisotropies provides

a modus operandi for extending to higher levels of theory

or to other bond types. It is generally accepted that

Hartree–Fock magnetisabilities are reasonably accurate
[21], so we would expect only a small improvement in

the A and B values when extending to higher levels of
theory. Other relevant bond types include those in nitro,

carboxylate, and guanido groups, the latter two being of

specific interest since they occur in protein side chains.

Accurate anisotropies for these groups would be of great

value in assigning complexation shifts in protein–protein

complexes.
The derived bond anisotropies will be of immediate

use in assigning structures for complexes containing

unsaturated bonds [2]. Our results indicate that for

bonds such as t-N@N, protons situated 3.5�AA above the
double bond will be shielded by approximately 0.4 ppm,

which is likely to be a significant contribution to the

overall complexation shift. The anisotropies collected

here therefore provide a valuable alternative to ne-
glecting bond anisotropies or to using values derived

from limited experimental data or from unsuitable ex-

perimental methods (for example, using anisotropies

derived from intramolecular shifts to describe shifts in

intermolecular complexes). The method used to obtain

the anisotropies also ensures a consistent level of accu-

racy across a broad range of bond types.
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